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Abstract 
 

Typically, multimedia database management 
systems process content-based image retrieval 
queries by extracting a set of features from each data 
object as it is inserted into the underlying database.  
By expressing queries that are based upon these 
features, users are able to retrieve the data objects 
back from the database.  Previous research has 
demonstrated that one method of improving the 
effectiveness of similarity searches in such systems is 
to augment the underlying database with a set of 
edited images to allow more flexible matching.  
Space can be saved by storing the additional images 
as sequences of editing operations instead of as large 
binary objects.  This paper proposes an approach for 
processing retrieval queries in such an environment 
and presents the results of a performance evaluation 
demonstrating the effectiveness of the approach. 
 
1. Introduction 
 

Due to the availability of faster and more powerful 
processors and the growth of the popularity of the 
Web, more and more computer applications are being 
developed that maintain collections of images and 
other types of multimedia data.  Because multimedia 
data objects are different than traditional 
alphanumeric data, a Multimedia DataBase 
Management System (MMDBMS) has different 

storage and retrieval requirements from a traditional 
database management system.  For example, images 
are typically much larger than traditional 
alphanumeric data elements, so an MMDBMS should 
utilize efficient storage techniques when it contains a 
large number of images and other types of graphics 
objects.  In addition, users interpret the content of 
images when they view them, so an MMDBMS 
should facilitate searching utilizing that content, 
which is commonly called Content-Based Image 
Retrieval (CBIR) [1, 8]. 

To facilitate CBIR, systems typically extract a set 
of features and generate a signature for each image in 
the database, which is then used to represent the 
image’s content.  Subsequently, users can pose 
queries to the MMDBMS requesting images that 
have specific feature values.  The types of features 
extracted from the database images, then, are 
dependent upon the properties that best allow users to 
search them.  These properties should reflect the 
inherent nature of the domain of the application 
supported by the MMDBMS. 

To illustrate how visual properties can support 
CBIR, consider an application that performs 
autonomous navigation while driving and therefore 
needs to recognize images of road signs.  When 
considering such images, it should be noted that 
many countries around the world have adopted 
specific color and shape-based conventions for 
classifying different types of signs.  The is because 
signs with recognizable symbols and colors are easier 
for people to use than signs with words, and the 
symbols and colors aid drivers and passengers that 
are not familiar with the local language [11].  An 
MMDBMS supporting road sign recognition, then, 
should provide searching using color and shape-
based features since they provide information about 
the purpose of a sign. 
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The above discussion indicates that a critical 
component of performing CBIR is the ability to 
extract features from images.  The existing 
techniques for performing feature extraction are 
based upon the images being stored in a conventional 
binary format.  Previous research [5, 7] has indicated 
that it may be possible to improve the effectiveness 
of a CBIR application by storing some of the images 
using an alternative format, which is as sequences of 
editing operations.  The purpose of this paper is to 
present techniques for performing CBIR in this 
environment. 

The rest of the paper is organized as follows.  
Section 2 discusses how adding images stored as 
editing operations can improve the effectiveness of a 
CBIR system.  Sections 3 and 4 present two 
approaches for performing CBIR in such a system.  
Section 5 presents the results of a performance 
evaluation comparing the execution times of the two 
approaches.  Finally, Section 6 summarizes this paper 
and provides directions for future work. 

 
2. Database Augmentation 

 
One issue when performing CBIR is that it is 

possible that features extracted from two similar 
images do not match.  Many instances of this 
problem persist as open issues in the CBIR research 
community.  For example, it is difficult to match 
images of the same object under varying lighting 
conditions or under varying settings such as outdoor 
environments [25].  Thus, if an image of an object 
taken outdoors at night is presented as a query image, 
it may fail to match an image in the database of the 
same object.  This affects the accuracy of the 
MMDBMS when processing a similarity search. 

One technique for improving the accuracy of 
CBIR systems is to replace a given query image by 
several query images as in [23].  Each query image is 
submitted to the database as a separate query, and the 
results from all of the individual queries are 
combined together to form one cumulative result.  
This technique is somewhat analogous to text 
retrieval systems that place additional terms in a 
user’s query utilizing a manually produced thesaurus 
before searching a collection of documents.  One 
problem with this approach is that the features must 
be extracted from each query image in order to search 
the underlying MMDBMS.  Since feature extraction 
is a very expensive process, the time needed to 
respond to process each CBIR query would 
dramatically increase. 

As an alternative to the above approach, an 
MMDBMS can address the problems of feature 

matching by augmenting the underlying database 
with new images derived by editing the original 
images already present.  So, for each image object z 
in the database, the system will store z along with a 
set of images created by transforming z using 
sequences of editing operations.  This approach can 
improve the accuracy of CBIR systems in any 
situation when a particular database image, say x, is 
expected to be retrieved in response to a query image 
q, but the features extracted from q and x do not 
sufficiently match.  The central idea is that the 
features of q may sufficiently match op(x), where 
op(x) is created by applying a series of editing 
operations on image x.  This means that if the 
database is augmented by the addition of op(x), then 
op(x) can be returned in response to the similarity 
search query.  Furthermore, as long as the 
MMDBMS maintains a connection between images x 
and op(x), this connection can be used to determine 
that x should also be returned in response to the 
similarity search query even though their respective 
features do not sufficiently match.  While this 
approach may increase the number of false positives 
produced by the system, it will decrease the number 
of false negatives.  Avoiding false negatives is often 
more important than avoiding false positives since a 
user can filter out unwanted returned images but has 
no way of knowing a matching database image exists 
if the system fails to retrieve it [12]. 

One key benefit of database augmentation 
becomes apparent when comparing it to traditional 
CBIR research.  Such research typically focuses on 
either identifying techniques for improving the 
features extracted from images or improving the 
process used to compare or classify those features.  
To implement these techniques in an existing CBIR 
system, it is necessary to change its internal 
procedures used to extract and compare features.  
These changes can be expensive since it often 
requires purchasing new software or hiring 
developers to modify the existing source code.  In 
contrast, augmenting databases can improve CBIR 
without developing new feature extraction 
techniques.  Thus, database augmentation can be an 
inexpensive method for improving the accuracy of a 
CBIR system. 

A disadvantage of database augmentation is that it 
increases the number of images stored in the 
underlying database.  This disadvantage is magnified 
because, as stated earlier, one of the features that 
distinguish multimedia data from traditional 
alphanumeric data is that multimedia data objects are 
much larger.  Thus, adding edited images to the 
database will create a nontrivial increase in the 
storage required by the MMDBMS. 
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To minimize the effects of the above 
disadvantage, an MMDBMS can adopt the technique 
of storing the additional images as sequences of 
operations [19, 20] instead of storing them in a 
conventional binary format such as JPEG [24].  The 
reason is that an image stored as a set of editing 
operations will consume much less space than the 
same image stored in a conventional binary format.  
Specifically, if an image e is created by editing an 
original base image object, say b, the edited image is 
stored as a reference to b along with the sequence of 
operations used to change b into e.  Such an image 
can be instantiated by accessing the referenced base 
image and sequentially executing the associated 
editing operations. 

To summarize, in order to improve the accuracy of 
CBIR, it may be necessary to add edited versions of 
existing images to the underlying database.  So, when 
an image x is inserted into such a CBIR system, 
several edited versions of image x should be added to 
the underlying database as well.  These edited images 
should be stored as sequences of operations to save 
space.  Thus, an MMDBMS that uses database 
augmentation will store images conventionally and as 
sequences of editing operations.  The remainder of 
this paper discusses processing queries in this 
environment. 

 
3. Searching Edited Images by Color 

 
The current methods for extracting features from 

images require that the images are stored in a binary 
format.  So, in an augmented database, any images 
stored as editing operations must first be instantiated 
for the system to use the current methods of feature 
extraction.  Since instantiation is an expensive 
process in terms of execution time, it should be 
avoided.  Ideally, then, an augmented database 
management system needs to be able to identify the 
values of the features in the edited images directly 
from the sequence of operations used to create it.  As 
a first step toward this goal, we developed a method 
of determining the color-based features that are 
contained within an image represented as a sequence 
of editing operations [4].  To present this method, it 
is first necessary to describe the conventional method 
for searching images by color. 

 
3.1. Extracting Color-Based Features 

 
When extracting color features, one common 

method used by existing systems is to generate a 
histogram for each image stored in the database 
where each histogram bin contains the percentage of 

pixels in that image that are of a particular color.  
These colors are usually obtained by uniformly 
quantizing the space of a color model such as RGB, 
HSV, or Luv into a system-dependent number of 
divisions.  Numerous CBIR systems utilize similar 
histogram methods to either directly represent or to 
generate alternative representations for color-based 
features including BIC [21], DISIMA [16], MARS 
[17], and RECI [6]. 

Since each image is represented using a signature 
computed based on a color histogram, the users can 
query the database requesting the images that have a 
specified percentage of pixels containing a certain 
color.  An example of such a query is “Retrieve all 
images that are at least 25% blue.”  In addition, to 
search for images that are similar to a query image q, 
the MMDBMS can extract a signature from q and 
then compare that signature to the signatures stored 
in the database.  Common functions used to evaluate 
the similarity between two n-dimensional histograms 
<x1, …, xn> and <y1, …, yn> include the (1) 
Histogram Intersection [22] and (2) the Lp-Distances 
[15].  Additional functions for comparing histograms 
can be found in [6].  In order to reduce the query 
processing time, the histograms can be organized in 
multidimensional indexes such as the R-tree [13] and 
its numerous variants [3, 10]. 
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3.2. Retrieving Edited Images by Color 

 
From the above discussion, the key component of 

performing color-based retrieval is being able to 
extract a color histogram from each of the images 
stored in the database.  This involves identifying the 
values in each bin of the histogram of a given image.  
We presented a Rule-Based Method (RBM) for 
identifying these values in edited images without 
having to instantiate them [4].  RBM uses a set of 
rules that describe the effects of specific editing 
operations on the histogram of an image.  
Specifically, it uses the rules to compute minimum 
and maximum bounds on the percentage of pixels in 
an edited image whose colors map to some specified 
histogram bin, say bin HB. 

The above rules are dependent upon the image 
editing operations that may be used by the system to 
create the edited images.  In our work [4], these 
operations are restricted to the following set from [2, 
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20], which contains five operations called Define 
(DR), Combine (C1, …, C9), Modify (RGBold, 
RGBnew), Mutate (M11, …, M33), and Merge 
(target_image, coordinates).  The Define operation 
selects the group of pixels that will be edited by the 
subsequent operations in the list, and the parameters 
to the operation specify the coordinates of the desired 
group of pixels, called the Defined Region (DR).  
The Combine operation is used to blur images by 
changing the colors of the pixels in the DR to the 
weighted average of the colors of the pixels’ 
neighbors, and the parameters to the operation are the 
weights (C1, …, C9) applied to each of the neighbors 
C1 through C9.  The Modify operation is used to 
explicitly change the colors of the pixels in the DR 
that are of a certain color, RGBold, into a new color, 
RGBnew.  The parameters of the Modify operation 
specify both RGBold and RGBnew.  The Mutate 
operation is used to rearrange pixels within an image, 
and the parameters specify the matrix (M11, …, M33) 
used to change the locations of the pixels.  This 
operation can be used to perform rotations, scales, 
and translations of items within an image.  Finally, 
the Merge operation is used to copy the current DR 
into a target image, and the parameters specify the 
target image and the coordinates specifying where to 
copy the DR.  This set of five operations is used 
because it has the property that its operations can be 
combined to perform any image transformation by 
manipulating a single pixel at a time [2]. 

The purpose of each rule is to determine how its 
associated editing operation can change a given 
histogram bin HB.  Thus, each rule is expressed as an 
adjustment to the minimum and maximum bounds on 
the percentage of pixels that may be in bin HB if the 
edited image was instantiated.  The percentages are 
adjusted by repeatedly updating the total number of 
pixels that are in the image as well as the minimum 
and maximum number of pixels that are in bin HB 
for each editing operation used to create the edited 
image.  Table 1 summarizes the formulae for 
computing these adjustments based on the parameters 
of each operation.  In the table, |E| represents the 
number of pixels in the edited image, |T| represents 
the number of pixels in the target image of the Merge 
operation, |THB| represents the number of pixels in the 
target that are in bin HB, |HB|min represents the 
minimum number of pixels in bin HB, and |HB|max 
represents the maximum number of pixels in bin HB. 

Consider using the rules to determine if an edited 
image E satisfies the given query.  A system could 
access the value of the histogram bin for the 
referenced base image given in the storage format of 

E, and then use the above rules to determine how the 
associated editing operations modify that value.  
After applying the rules, let the minimum number of 
pixels that are in bin HB be represented by 
BOUNDmin, let the maximum number of pixels that 
are in bin HB be represented by BOUNDmax, and let 
the size of the image be represented by imageSize.  
The range [BOUNDmin/imageSize, BOUNDmax/ 
imageSize] represents the bounds on the percentage 
of pixels in image E that map to bin HB.  If this range 
does not overlap the desired query range, image E 
cannot satisfy the given query.  Thus, the above rules 
can be used to eliminate images that do not satisfy a 
given query without producing false negatives by 
computing the range [BOUNDmin/imageSize, 
BOUNDmax/imageSize]. 

 
4. Reducing Execution Time 

 
Systems that use conventional approaches such as 

histograms to retrieve images by color are able to 
process submitted retrieval queries without having to 
access each image in the underlying database.  This is 
frequently accomplished by using an index or other 
type of access method that clusters the data elements 
into sections of the multidimensional data space of 
the histograms.  Searching is then performed by 
accessing nodes in the data structure that represent 
those sections.  By quickly identifying sections of the 
multidimensional space that cannot contain any 
histograms of images that satisfy the given query, the 
query processing algorithm can avoid accessing the 
data elements contained in those sections. 

Using a similar idea of reducing query processing 
time by eliminating data accesses, this section 
presents a method for speeding up the RBM approach 
described in the previous section.  When using RBM 
for determining if an edited image satisfies a given 
color-based query, it is necessary to access each of 
the image’s editing operations and apply the 
corresponding rules.  Thus, this approach must access 
every edited image in a database as well as every 
editing operation within each image description to 
process the submitted query.  Following the idea of 
indexes for multidimensional data objects, this 
section presents an approach for producing the same 
query results while reducing the execution time by 
avoiding having to apply rules for some of the editing 
operations in the images in the database. 
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Table 1.  Rules for adjusting bounds on numbers of pixels in histogram bin HB 

Editing 
Operation Conditions 

Minimum 
Number in bin 

HB 

Maximum Number in 
bin HB 

Total Number of 
Pixels in Image 

Combine 
(C11, …, C33) 

All No change No change No change 

Modify 
(RGBold,RGBnew) 

If RGBnew maps to 
HB No Change Increase by |DR| No Change 

 Else if RGBold maps 
to HB Decrease by |DR| No Change No Change 

 Else  No Change No Change No Change 
Mutate  
(M11, M12, M13, 
M21, M22, M23, 
M31, M32, M33) 

DR contains image Multiply by 
|M11×M22| 

Multiply by |M11×M22| Multiply by |M11×M22| 

 Rigid Body Decrease by |DR| Increase by |DR| No Change 
Merge 
(Target, xp, yp) 

Target is NULL |DR| – (|E| – 
|HB|min) 

MIN[|HB|max, |DR|] |DR| 

 Target is Not NULL 

|DR| − (|E| − 
|HB|min) 

+ 
|THB| – |DR| 

MIN(|HB|max, |DR|) 
+ 

MIN(|THB|, |T| – |DR|) 

[MAX((xp+x2–x1), 
height of Target) – 

MIN(xp,0)+1] × 
[MAX((yp+y2–y1), 
width of Target) – 

MIN(yp,0)+1] 
 
 

 

To present the proposed technique, it is first 
necessary to consider the characteristics of the rules 
that are applied for each operation.  Each rule 
produces new maximum and minimum bounds on the 
percentage of pixels that may be in a given histogram 
bin for an edited image.  The algorithm produces 
these bounds by computing the maximum number of 
pixels that are in the histogram bin, the minimum 
number of pixels that are in the histogram bin, and 
the total number of pixels in the edited image.  So, 
these three values can be used to identify certain 
characteristics of the proposed rules. 

Several of the proposed rules only increase the 
maximum bound, BOUNDmax, and decrease the 
minimum bound, BOUNDmin, on the number of 
pixels in the bin, while they keep the total number of 
pixels, imageSize, in the edited image constant.  The 
result is that these rules will only widen the range 
specified by the minimum bound and maximum 
bounds.  Rules that exhibit this characteristic are 
called bound-widening rules, and they can be used to 
avoid having to apply rules for some of the 
operations.  Specifically, consider an edited image E 
that only contains operations with bound-widening 
rules.  During the process of computing the range 
[BOUNDmin/imageSize, BOUNDmax/imageSize], let 
its initial values form a range that intersects the range 

formed by the desired query range.  Since all of the 
rules for the operations in E only increase the range 
formed by [BOUNDmin/imageSize, 
BOUNDmax/imageSize], we know that the final 
computed range will intersect the desired query range 
[PCTmin and PCTmax] without having to apply the 
rules. 

The above discussion implies that two conditions 
are necessary in order to avoid having to apply the 
rules for an edited image E.  First, all of the editing 
operations in E must have bound-widening rules.  
Second, the initial value of the range 
[BOUNDmin/imageSize, BOUNDmax/imageSize] must 
intersect the desired query range.  Note that the initial 
values of the bounds are taken from the referenced 
image listed in the description of E.  This means that 
the second condition can be simplified to requiring 
that the referenced base image of E must satisfy the 
user’s query.  If both conditions hold, the query 
processor does not have to access the rules associated 
with the operations in E. 

So, to reduce the time needed by the RBM query 
processing approach presented in Section 3, it is 
necessary to identify which rules are bound-
widening, and which images only contain those rules.  
The rules for the Modify, Combine, and Mutate 
operations are bound-widening, and the rule for the 
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Merge operation is bound-widening when the target 
parameter is null.  The system needs to store those 
images that only contain those operations inside a 
data structure that used for future query processing.  
We describe such a data structure in the next section. 

 
/* Identify referenced base image of the newly 
created input  edited image E. */ 
1. Identify the referenced base image B of the edited 
image E 
2. Access the histogram corresponding to B 
 
/* Analyze all of the operations in E to determine if 
they are all bound-widening */ 
3. While (E has more ops and E is unmarked) 
3.1      Access rule for the next operation in E 
3.2      If the rule is not bound-widening 
3.2.1          Mark E as unclassified 
 
/* If all operations in E are bound-widening, add E to 
Main, else add E to Unclassified */ 
4. If E has been marked as unclassified 
4.1      Append identifier of E to Unclassified 
5. else 
5.1.     Find loc in Main referring to base image 
5.2     Append identifier of E to the list of edited 
images at the above location 

Figure 1.  Insertion algorithm for proposed 
data structure 

 
4.1. Proposed Data Structure 

The proposed data structure consists of two 
different components called the Main Component 
and the Unclassified Component.  The Main 
Component contains a list of the edited images which 
contain operations that have only bound-widening 
rules proposed for it.  These edited images are 
clustered together based upon the referenced base 
images that are listed in their respective descriptions, 
meaning that two edited images are clustered together 
if and only if they have the same referenced image.  
Each element of the Main Component is composed of 
a tuple <B_id, E_list> where B_id is the identifier of 
referenced base image and E_List is the list of 
identifiers of edited images that were created from 
modifying B_id.  Some of the edited images may 
have descriptions that contain at least one editing 
operation, the corresponding rule of which is not 
bound-widening.  The identifiers of such edited 
images are stored in the Unclassified Component.  To 
process these edited images, the system will still have 
to use the approach presented in Section 3. 

The proposed data structure can be constructed as 
images are inserted into the database.  Each time an 
image stored in a traditional binary format is inserted, 

the identifier for its corresponding histogram should 
be added to the Main Component.  The list of 
identifiers should be kept sorted to make it easier to 
search for a specific binary image.  Once a binary 
image B is added to the MMDBMS, the system 
should insert the descriptions of the edited versions 
of B into the system as well.  Each time an edited 
image is inserted into the database, the system needs 
to determine whether it should be added to the Main 
Component or the Unclassified Component.  To 
make this determination, the edited image must be 
analyzed in order to check if it contains any rules that 
are not bound-widening.  If so, then the identifier of 
the edited image is added to the Unclassified 
Component.  If all of the rules are bound-widening, 
then the identifier is added to the cluster in the Main 
Component corresponding to image B.  An algorithm 
for performing this insertion is displayed in Figure 1. 
 
 
/* Initialize the parameters of the given query */ 
1. Set results = ∅ 
2. Input query from user 
3. Analyze query to determine parameters query range 
[PCTmin, PCTmax] and histogram bin HB 
 
/* Identify edited images in Main Component that 
satisfy the query */ 
4. For each element <B_id, E_list> in Main 
4.1   pixels = the value in bin HB of image E_id 
 
/* If the binary image does satisfy the query, all 
elements of E_list satisfy the query as well */ 
4.2   If ((pixels > PCTmin) and (pixels < PCTmax)) 
4.2.1      Add B_id to results 
4.2.2      Add the elements in E_list to results 
 
/* If the binary image does not satisfy the query, 
compute boundary range for each image given in 
E_list to determine if it satisfies the query */ 
4.3   else 
4.3.1      For each E in E_list 
4.3.1.1         Execute BOUNDS algorithm for E 
4.3.1.2         If bounds overlap [PCTmin, PCTmax] 
4.3.1.2.1            Add E to set results 
 
/* The boundary range must be computed for each 
edited image in Unclassified to determine if it satisfies 
the query as well. */ 
5. For each element E in Unclassified 
5.1     Execute the BOUNDS algorithm for E 
5.2     If bounds overlap [PCTmin, PCTmax]  
5.2.1         Add E to results 
Figure 2.  Query processing algorithm using 

proposed data structure 
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The above data structure can be used in the 
Bound-Widening Method (BWM) for processing 
range queries in an augmented MMDBMS without 
having to ever instantiate the edited images.  First, 
the algorithm, displayed in Figure 2, computes the 
query parameters HB, PCTmin, and PCTmax.  Next, the 
algorithm sequentially accesses each cluster in the 
Main Component and checks if the histogram of the 
corresponding binary image satisfies the given query.  
If so, then its identifier along with all of the 
identifiers of the edited images within the cluster are 
added to the query’s resultant set.  If the binary 
image’s histogram does not satisfy the query, then the 
rules for each operation of the edited images within 
the cluster will have to be applied as indicated in 
Section 3.  The final step in the algorithm is to apply 
the rules for each operation of the edited images 
listed in the Unclassified Component. 
 
5. Performance Evaluation 

 
We implemented RBM and BWM and compared 

them using various data sets.  The implementations 
were performed using the Perl language on a 
SUNsparc workstation, and they do not use any 
commercial software for managing the databases.  
They do use utilities from the pbmplus [18] package, 
however, to convert binary images between the text-
based ppm format and more commonly used formats 
such as gif and jpeg.  The data sets were obtained 
from various sites on the Internet.  The first data set 
contains a collection of images of flags around the 
world [9], and the second contains a collection of 
images of college football helmets [14].  These data 
sets were selected because color-based features are 
extremely important in recognizing both flags and 
logos.  Table 2 lists the parameters of the test for 
each data set. 

The tests compared the average execution time of 
the algorithms for processing range queries in 
augmented databases with and without using the data 
structure presented in Section 4.  The average 

execution time is measured against the percentage of 
edited images stored in the database.  The results of 
the tests are displayed in Figures 3 and 4 for the flag 
and helmet data sets, respectively.  They indicate that 
the average execution time of BWM is smaller than 
the average execution time of RBM.  BWM allows 
the system to process the queries an average of 
33.07% faster for the helmet data set and an average 
of 22.08% faster for the flag data set.  Both tests 
demonstrated, however, that the reduction in time 
decreased as more images were stored as editing 
operations.  The reason is that the proposed data 
structure improves execution time when images 
contain only operations with bound-widening rules.  
Each edited image containing a non bound-widening 
operation requires the same processing cost as the 
algorithm of Section 3.  If many of the edited images 
fall into this category, the added cost of the data 
structure actually hurts the performance of the query 
processor. 
 
6.  Summary and Future Work 
 

When focusing on improving the methods used by 
CBIR components of MMDBMSs to search and 
retrieve images, existing research focuses on 
developing techniques for improving the feature 
extraction or comparison functions.  Unfortunately, 
implementing those techniques in an existing system 
requires changing the internal procedures used by 
that system to perform those functions.  As an 
alternative, the approach of database augmentation 
provides the ability to improve the retrieval accuracy 
of an existing CBIR application without modifying 
its internal procedures.  Implementing the database 
augmentation approach, however, means that the 
system will need to store many edited versions of its 
data objects.  In order to save space, these additional 
object versions can simply be stored as sequences of 
editing operations. 

 

Table 2.  Default values of parameters used in performance evaluation 
Description Helmet Flag 
Number of images in database 551 817 
Number of binary images in database 391 466 
Number of edited images in database 160 351 
Average number of operations within an edited image 4.56 4.99 
Number of edited images that contain only operations with bound-widening rules 14 207 
Number of edited images that have an operation whose rule is not bound-widening 146 144 
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Figure 3.  Execution time vs. percentage of images stored as editing operations (helmets) 
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Figure 4.  Execution time vs. percentage of images stored as editing operations (flags) 

 
 
Assuming the edited objects are stored as 

sequences of editing operations, another research 
question involves how to search those objects without 
instantiating them.  The approach presented in this 
paper is another step in answering that question.  
Specifically, this paper presented an approach for 
reducing the execution time when processing range 
queries in a system that uses rules to determine the 
color features of images stored as editing operations.  
The approach is based upon identifying whether each 
rule is a bound-widening rule. 

This research focused on searching image 
applications that are distinguished using color 
features.  It tested the approach on prototype systems 
that used color histograms to represent images and 
permitted users to submit range queries in order to 
retrieve the data.  These tests were performed 
because they serve as the foundation for many 
different representations of color and many different 
types of queries.  Still, more testing is needed to 
verify the effects of the proposed data structure on 
systems that represent color features without 
histograms and systems that permit other types of 
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queries including nearest neighbor searches.  In 
addition, in order to allow this approach to be 
effective for a broader collection of applications, it 
will be necessary to develop approaches for other 
common features besides color, such as texture and 
shape. 
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