
www.manaraa.com

Speeding up Color-Based Retrieval in Multimedia Database Management
Systems that Store Images as Sequences of Editing Operations

Leonard Brown
The University of Texas at Tyler
Department of Computer Science

Tyler, TX, 75799
lbrown@uttyler.edu

Le Gruenwald**
The University of Oklahoma
School of Computer Science

Norman, OK, 73019
ggruenwald@ou.edu

Abstract

Typically, multimedia database management
systems process content-based image retrieval
queries by extracting a set of features from each data
object as it is inserted into the underlying database.
By expressing queries that are based upon these
features, users are able to retrieve the data objects
back from the database. Previous research has
demonstrated that one method of improving the
effectiveness of similarity searches in such systems is
to augment the underlying database with a set of
edited images to allow more flexible matching.
Space can be saved by storing the additional images
as sequences of editing operations instead of as large
binary objects. This paper proposes an approach for
processing retrieval queries in such an environment
and presents the results of a performance evaluation
demonstrating the effectiveness of the approach.

1. Introduction

Due to the availability of faster and more powerful
processors and the growth of the popularity of the
Web, more and more computer applications are being
developed that maintain collections of images and
other types of multimedia data. Because multimedia
data objects are different than traditional
alphanumeric data, a Multimedia DataBase
Management System (MMDBMS) has different

storage and retrieval requirements from a traditional
database management system. For example, images
are typically much larger than traditional
alphanumeric data elements, so an MMDBMS should
utilize efficient storage techniques when it contains a
large number of images and other types of graphics
objects. In addition, users interpret the content of
images when they view them, so an MMDBMS
should facilitate searching utilizing that content,
which is commonly called Content-Based Image
Retrieval (CBIR) [1, 8].

To facilitate CBIR, systems typically extract a set
of features and generate a signature for each image in
the database, which is then used to represent the
image’s content. Subsequently, users can pose
queries to the MMDBMS requesting images that
have specific feature values. The types of features
extracted from the database images, then, are
dependent upon the properties that best allow users to
search them. These properties should reflect the
inherent nature of the domain of the application
supported by the MMDBMS.

To illustrate how visual properties can support
CBIR, consider an application that performs
autonomous navigation while driving and therefore
needs to recognize images of road signs. When
considering such images, it should be noted that
many countries around the world have adopted
specific color and shape-based conventions for
classifying different types of signs. The is because
signs with recognizable symbols and colors are easier
for people to use than signs with words, and the
symbols and colors aid drivers and passengers that
are not familiar with the local language [11]. An
MMDBMS supporting road sign recognition, then,
should provide searching using color and shape-
based features since they provide information about
the purpose of a sign.

**This material is based upon work supported by
(while serving at) the National Science Foundation
(NSF). Any opinion, findings, and conclusions or
recommendations expressed in this material are those
of the authors and do not necessarily reflect the views
of the NSF.

www.manaraa.com

The above discussion indicates that a critical
component of performing CBIR is the ability to
extract features from images. The existing
techniques for performing feature extraction are
based upon the images being stored in a conventional
binary format. Previous research [5, 7] has indicated
that it may be possible to improve the effectiveness
of a CBIR application by storing some of the images
using an alternative format, which is as sequences of
editing operations. The purpose of this paper is to
present techniques for performing CBIR in this
environment.

The rest of the paper is organized as follows.
Section 2 discusses how adding images stored as
editing operations can improve the effectiveness of a
CBIR system. Sections 3 and 4 present two
approaches for performing CBIR in such a system.
Section 5 presents the results of a performance
evaluation comparing the execution times of the two
approaches. Finally, Section 6 summarizes this paper
and provides directions for future work.

2. Database Augmentation

One issue when performing CBIR is that it is

possible that features extracted from two similar
images do not match. Many instances of this
problem persist as open issues in the CBIR research
community. For example, it is difficult to match
images of the same object under varying lighting
conditions or under varying settings such as outdoor
environments [25]. Thus, if an image of an object
taken outdoors at night is presented as a query image,
it may fail to match an image in the database of the
same object. This affects the accuracy of the
MMDBMS when processing a similarity search.

One technique for improving the accuracy of
CBIR systems is to replace a given query image by
several query images as in [23]. Each query image is
submitted to the database as a separate query, and the
results from all of the individual queries are
combined together to form one cumulative result.
This technique is somewhat analogous to text
retrieval systems that place additional terms in a
user’s query utilizing a manually produced thesaurus
before searching a collection of documents. One
problem with this approach is that the features must
be extracted from each query image in order to search
the underlying MMDBMS. Since feature extraction
is a very expensive process, the time needed to
respond to process each CBIR query would
dramatically increase.

As an alternative to the above approach, an
MMDBMS can address the problems of feature

matching by augmenting the underlying database
with new images derived by editing the original
images already present. So, for each image object z
in the database, the system will store z along with a
set of images created by transforming z using
sequences of editing operations. This approach can
improve the accuracy of CBIR systems in any
situation when a particular database image, say x, is
expected to be retrieved in response to a query image
q, but the features extracted from q and x do not
sufficiently match. The central idea is that the
features of q may sufficiently match op(x), where
op(x) is created by applying a series of editing
operations on image x. This means that if the
database is augmented by the addition of op(x), then
op(x) can be returned in response to the similarity
search query. Furthermore, as long as the
MMDBMS maintains a connection between images x
and op(x), this connection can be used to determine
that x should also be returned in response to the
similarity search query even though their respective
features do not sufficiently match. While this
approach may increase the number of false positives
produced by the system, it will decrease the number
of false negatives. Avoiding false negatives is often
more important than avoiding false positives since a
user can filter out unwanted returned images but has
no way of knowing a matching database image exists
if the system fails to retrieve it [12].

One key benefit of database augmentation
becomes apparent when comparing it to traditional
CBIR research. Such research typically focuses on
either identifying techniques for improving the
features extracted from images or improving the
process used to compare or classify those features.
To implement these techniques in an existing CBIR
system, it is necessary to change its internal
procedures used to extract and compare features.
These changes can be expensive since it often
requires purchasing new software or hiring
developers to modify the existing source code. In
contrast, augmenting databases can improve CBIR
without developing new feature extraction
techniques. Thus, database augmentation can be an
inexpensive method for improving the accuracy of a
CBIR system.

A disadvantage of database augmentation is that it
increases the number of images stored in the
underlying database. This disadvantage is magnified
because, as stated earlier, one of the features that
distinguish multimedia data from traditional
alphanumeric data is that multimedia data objects are
much larger. Thus, adding edited images to the
database will create a nontrivial increase in the
storage required by the MMDBMS.

www.manaraa.com

To minimize the effects of the above
disadvantage, an MMDBMS can adopt the technique
of storing the additional images as sequences of
operations [19, 20] instead of storing them in a
conventional binary format such as JPEG [24]. The
reason is that an image stored as a set of editing
operations will consume much less space than the
same image stored in a conventional binary format.
Specifically, if an image e is created by editing an
original base image object, say b, the edited image is
stored as a reference to b along with the sequence of
operations used to change b into e. Such an image
can be instantiated by accessing the referenced base
image and sequentially executing the associated
editing operations.

To summarize, in order to improve the accuracy of
CBIR, it may be necessary to add edited versions of
existing images to the underlying database. So, when
an image x is inserted into such a CBIR system,
several edited versions of image x should be added to
the underlying database as well. These edited images
should be stored as sequences of operations to save
space. Thus, an MMDBMS that uses database
augmentation will store images conventionally and as
sequences of editing operations. The remainder of
this paper discusses processing queries in this
environment.

3. Searching Edited Images by Color

The current methods for extracting features from

images require that the images are stored in a binary
format. So, in an augmented database, any images
stored as editing operations must first be instantiated
for the system to use the current methods of feature
extraction. Since instantiation is an expensive
process in terms of execution time, it should be
avoided. Ideally, then, an augmented database
management system needs to be able to identify the
values of the features in the edited images directly
from the sequence of operations used to create it. As
a first step toward this goal, we developed a method
of determining the color-based features that are
contained within an image represented as a sequence
of editing operations [4]. To present this method, it
is first necessary to describe the conventional method
for searching images by color.

3.1. Extracting Color-Based Features

When extracting color features, one common

method used by existing systems is to generate a
histogram for each image stored in the database
where each histogram bin contains the percentage of

pixels in that image that are of a particular color.
These colors are usually obtained by uniformly
quantizing the space of a color model such as RGB,
HSV, or Luv into a system-dependent number of
divisions. Numerous CBIR systems utilize similar
histogram methods to either directly represent or to
generate alternative representations for color-based
features including BIC [21], DISIMA [16], MARS
[17], and RECI [6].

Since each image is represented using a signature
computed based on a color histogram, the users can
query the database requesting the images that have a
specified percentage of pixels containing a certain
color. An example of such a query is “Retrieve all
images that are at least 25% blue.” In addition, to
search for images that are similar to a query image q,
the MMDBMS can extract a signature from q and
then compare that signature to the signatures stored
in the database. Common functions used to evaluate
the similarity between two n-dimensional histograms
<x1, …, xn> and <y1, …, yn> include the (1)
Histogram Intersection [22] and (2) the Lp-Distances
[15]. Additional functions for comparing histograms
can be found in [6]. In order to reduce the query
processing time, the histograms can be organized in
multidimensional indexes such as the R-tree [13] and
its numerous variants [3, 10].

∑
=

n

i
ii yx

1
),min((1)

p
pn

i
ii yx∑

=

−
1

)((2)

3.2. Retrieving Edited Images by Color

From the above discussion, the key component of

performing color-based retrieval is being able to
extract a color histogram from each of the images
stored in the database. This involves identifying the
values in each bin of the histogram of a given image.
We presented a Rule-Based Method (RBM) for
identifying these values in edited images without
having to instantiate them [4]. RBM uses a set of
rules that describe the effects of specific editing
operations on the histogram of an image.
Specifically, it uses the rules to compute minimum
and maximum bounds on the percentage of pixels in
an edited image whose colors map to some specified
histogram bin, say bin HB.

The above rules are dependent upon the image
editing operations that may be used by the system to
create the edited images. In our work [4], these
operations are restricted to the following set from [2,

www.manaraa.com

20], which contains five operations called Define
(DR), Combine (C1, …, C9), Modify (RGBold,
RGBnew), Mutate (M11, …, M33), and Merge
(target_image, coordinates). The Define operation
selects the group of pixels that will be edited by the
subsequent operations in the list, and the parameters
to the operation specify the coordinates of the desired
group of pixels, called the Defined Region (DR).
The Combine operation is used to blur images by
changing the colors of the pixels in the DR to the
weighted average of the colors of the pixels’
neighbors, and the parameters to the operation are the
weights (C1, …, C9) applied to each of the neighbors
C1 through C9. The Modify operation is used to
explicitly change the colors of the pixels in the DR
that are of a certain color, RGBold, into a new color,
RGBnew. The parameters of the Modify operation
specify both RGBold and RGBnew. The Mutate
operation is used to rearrange pixels within an image,
and the parameters specify the matrix (M11, …, M33)
used to change the locations of the pixels. This
operation can be used to perform rotations, scales,
and translations of items within an image. Finally,
the Merge operation is used to copy the current DR
into a target image, and the parameters specify the
target image and the coordinates specifying where to
copy the DR. This set of five operations is used
because it has the property that its operations can be
combined to perform any image transformation by
manipulating a single pixel at a time [2].

The purpose of each rule is to determine how its
associated editing operation can change a given
histogram bin HB. Thus, each rule is expressed as an
adjustment to the minimum and maximum bounds on
the percentage of pixels that may be in bin HB if the
edited image was instantiated. The percentages are
adjusted by repeatedly updating the total number of
pixels that are in the image as well as the minimum
and maximum number of pixels that are in bin HB
for each editing operation used to create the edited
image. Table 1 summarizes the formulae for
computing these adjustments based on the parameters
of each operation. In the table, |E| represents the
number of pixels in the edited image, |T| represents
the number of pixels in the target image of the Merge
operation, |THB| represents the number of pixels in the
target that are in bin HB, |HB|min represents the
minimum number of pixels in bin HB, and |HB|max
represents the maximum number of pixels in bin HB.

Consider using the rules to determine if an edited
image E satisfies the given query. A system could
access the value of the histogram bin for the
referenced base image given in the storage format of

E, and then use the above rules to determine how the
associated editing operations modify that value.
After applying the rules, let the minimum number of
pixels that are in bin HB be represented by
BOUNDmin, let the maximum number of pixels that
are in bin HB be represented by BOUNDmax, and let
the size of the image be represented by imageSize.
The range [BOUNDmin/imageSize, BOUNDmax/
imageSize] represents the bounds on the percentage
of pixels in image E that map to bin HB. If this range
does not overlap the desired query range, image E
cannot satisfy the given query. Thus, the above rules
can be used to eliminate images that do not satisfy a
given query without producing false negatives by
computing the range [BOUNDmin/imageSize,
BOUNDmax/imageSize].

4. Reducing Execution Time

Systems that use conventional approaches such as

histograms to retrieve images by color are able to
process submitted retrieval queries without having to
access each image in the underlying database. This is
frequently accomplished by using an index or other
type of access method that clusters the data elements
into sections of the multidimensional data space of
the histograms. Searching is then performed by
accessing nodes in the data structure that represent
those sections. By quickly identifying sections of the
multidimensional space that cannot contain any
histograms of images that satisfy the given query, the
query processing algorithm can avoid accessing the
data elements contained in those sections.

Using a similar idea of reducing query processing
time by eliminating data accesses, this section
presents a method for speeding up the RBM approach
described in the previous section. When using RBM
for determining if an edited image satisfies a given
color-based query, it is necessary to access each of
the image’s editing operations and apply the
corresponding rules. Thus, this approach must access
every edited image in a database as well as every
editing operation within each image description to
process the submitted query. Following the idea of
indexes for multidimensional data objects, this
section presents an approach for producing the same
query results while reducing the execution time by
avoiding having to apply rules for some of the editing
operations in the images in the database.

www.manaraa.com

Table 1. Rules for adjusting bounds on numbers of pixels in histogram bin HB

Editing
Operation Conditions

Minimum
Number in bin

HB

Maximum Number in
bin HB

Total Number of
Pixels in Image

Combine
(C11, …, C33)

All No change No change No change

Modify
(RGBold,RGBnew)

If RGBnew maps to
HB No Change Increase by |DR| No Change

 Else if RGBold maps
to HB Decrease by |DR| No Change No Change

 Else No Change No Change No Change
Mutate
(M11, M12, M13,
M21, M22, M23,
M31, M32, M33)

DR contains image Multiply by
|M11×M22|

Multiply by |M11×M22| Multiply by |M11×M22|

 Rigid Body Decrease by |DR| Increase by |DR| No Change
Merge
(Target, xp, yp)

Target is NULL |DR| – (|E| –
|HB|min)

MIN[|HB|max, |DR|] |DR|

 Target is Not NULL

|DR| − (|E| −
|HB|min)

+
|THB| – |DR|

MIN(|HB|max, |DR|)
+

MIN(|THB|, |T| – |DR|)

[MAX((xp+x2–x1),
height of Target) –

MIN(xp,0)+1] ×
[MAX((yp+y2–y1),
width of Target) –

MIN(yp,0)+1]

To present the proposed technique, it is first
necessary to consider the characteristics of the rules
that are applied for each operation. Each rule
produces new maximum and minimum bounds on the
percentage of pixels that may be in a given histogram
bin for an edited image. The algorithm produces
these bounds by computing the maximum number of
pixels that are in the histogram bin, the minimum
number of pixels that are in the histogram bin, and
the total number of pixels in the edited image. So,
these three values can be used to identify certain
characteristics of the proposed rules.

Several of the proposed rules only increase the
maximum bound, BOUNDmax, and decrease the
minimum bound, BOUNDmin, on the number of
pixels in the bin, while they keep the total number of
pixels, imageSize, in the edited image constant. The
result is that these rules will only widen the range
specified by the minimum bound and maximum
bounds. Rules that exhibit this characteristic are
called bound-widening rules, and they can be used to
avoid having to apply rules for some of the
operations. Specifically, consider an edited image E
that only contains operations with bound-widening
rules. During the process of computing the range
[BOUNDmin/imageSize, BOUNDmax/imageSize], let
its initial values form a range that intersects the range

formed by the desired query range. Since all of the
rules for the operations in E only increase the range
formed by [BOUNDmin/imageSize,
BOUNDmax/imageSize], we know that the final
computed range will intersect the desired query range
[PCTmin and PCTmax] without having to apply the
rules.

The above discussion implies that two conditions
are necessary in order to avoid having to apply the
rules for an edited image E. First, all of the editing
operations in E must have bound-widening rules.
Second, the initial value of the range
[BOUNDmin/imageSize, BOUNDmax/imageSize] must
intersect the desired query range. Note that the initial
values of the bounds are taken from the referenced
image listed in the description of E. This means that
the second condition can be simplified to requiring
that the referenced base image of E must satisfy the
user’s query. If both conditions hold, the query
processor does not have to access the rules associated
with the operations in E.

So, to reduce the time needed by the RBM query
processing approach presented in Section 3, it is
necessary to identify which rules are bound-
widening, and which images only contain those rules.
The rules for the Modify, Combine, and Mutate
operations are bound-widening, and the rule for the

www.manaraa.com

Merge operation is bound-widening when the target
parameter is null. The system needs to store those
images that only contain those operations inside a
data structure that used for future query processing.
We describe such a data structure in the next section.

/* Identify referenced base image of the newly
created input edited image E. */
1. Identify the referenced base image B of the edited
image E
2. Access the histogram corresponding to B

/* Analyze all of the operations in E to determine if
they are all bound-widening */
3. While (E has more ops and E is unmarked)
3.1 Access rule for the next operation in E
3.2 If the rule is not bound-widening
3.2.1 Mark E as unclassified

/* If all operations in E are bound-widening, add E to
Main, else add E to Unclassified */
4. If E has been marked as unclassified
4.1 Append identifier of E to Unclassified
5. else
5.1. Find loc in Main referring to base image
5.2 Append identifier of E to the list of edited
images at the above location

Figure 1. Insertion algorithm for proposed
data structure

4.1. Proposed Data Structure

The proposed data structure consists of two
different components called the Main Component
and the Unclassified Component. The Main
Component contains a list of the edited images which
contain operations that have only bound-widening
rules proposed for it. These edited images are
clustered together based upon the referenced base
images that are listed in their respective descriptions,
meaning that two edited images are clustered together
if and only if they have the same referenced image.
Each element of the Main Component is composed of
a tuple <B_id, E_list> where B_id is the identifier of
referenced base image and E_List is the list of
identifiers of edited images that were created from
modifying B_id. Some of the edited images may
have descriptions that contain at least one editing
operation, the corresponding rule of which is not
bound-widening. The identifiers of such edited
images are stored in the Unclassified Component. To
process these edited images, the system will still have
to use the approach presented in Section 3.

The proposed data structure can be constructed as
images are inserted into the database. Each time an
image stored in a traditional binary format is inserted,

the identifier for its corresponding histogram should
be added to the Main Component. The list of
identifiers should be kept sorted to make it easier to
search for a specific binary image. Once a binary
image B is added to the MMDBMS, the system
should insert the descriptions of the edited versions
of B into the system as well. Each time an edited
image is inserted into the database, the system needs
to determine whether it should be added to the Main
Component or the Unclassified Component. To
make this determination, the edited image must be
analyzed in order to check if it contains any rules that
are not bound-widening. If so, then the identifier of
the edited image is added to the Unclassified
Component. If all of the rules are bound-widening,
then the identifier is added to the cluster in the Main
Component corresponding to image B. An algorithm
for performing this insertion is displayed in Figure 1.

/* Initialize the parameters of the given query */
1. Set results = ∅
2. Input query from user
3. Analyze query to determine parameters query range
[PCTmin, PCTmax] and histogram bin HB

/* Identify edited images in Main Component that
satisfy the query */
4. For each element <B_id, E_list> in Main
4.1 pixels = the value in bin HB of image E_id

/* If the binary image does satisfy the query, all
elements of E_list satisfy the query as well */
4.2 If ((pixels > PCTmin) and (pixels < PCTmax))
4.2.1 Add B_id to results
4.2.2 Add the elements in E_list to results

/* If the binary image does not satisfy the query,
compute boundary range for each image given in
E_list to determine if it satisfies the query */
4.3 else
4.3.1 For each E in E_list
4.3.1.1 Execute BOUNDS algorithm for E
4.3.1.2 If bounds overlap [PCTmin, PCTmax]
4.3.1.2.1 Add E to set results

/* The boundary range must be computed for each
edited image in Unclassified to determine if it satisfies
the query as well. */
5. For each element E in Unclassified
5.1 Execute the BOUNDS algorithm for E
5.2 If bounds overlap [PCTmin, PCTmax]
5.2.1 Add E to results
Figure 2. Query processing algorithm using

proposed data structure

www.manaraa.com

The above data structure can be used in the
Bound-Widening Method (BWM) for processing
range queries in an augmented MMDBMS without
having to ever instantiate the edited images. First,
the algorithm, displayed in Figure 2, computes the
query parameters HB, PCTmin, and PCTmax. Next, the
algorithm sequentially accesses each cluster in the
Main Component and checks if the histogram of the
corresponding binary image satisfies the given query.
If so, then its identifier along with all of the
identifiers of the edited images within the cluster are
added to the query’s resultant set. If the binary
image’s histogram does not satisfy the query, then the
rules for each operation of the edited images within
the cluster will have to be applied as indicated in
Section 3. The final step in the algorithm is to apply
the rules for each operation of the edited images
listed in the Unclassified Component.

5. Performance Evaluation

We implemented RBM and BWM and compared

them using various data sets. The implementations
were performed using the Perl language on a
SUNsparc workstation, and they do not use any
commercial software for managing the databases.
They do use utilities from the pbmplus [18] package,
however, to convert binary images between the text-
based ppm format and more commonly used formats
such as gif and jpeg. The data sets were obtained
from various sites on the Internet. The first data set
contains a collection of images of flags around the
world [9], and the second contains a collection of
images of college football helmets [14]. These data
sets were selected because color-based features are
extremely important in recognizing both flags and
logos. Table 2 lists the parameters of the test for
each data set.

The tests compared the average execution time of
the algorithms for processing range queries in
augmented databases with and without using the data
structure presented in Section 4. The average

execution time is measured against the percentage of
edited images stored in the database. The results of
the tests are displayed in Figures 3 and 4 for the flag
and helmet data sets, respectively. They indicate that
the average execution time of BWM is smaller than
the average execution time of RBM. BWM allows
the system to process the queries an average of
33.07% faster for the helmet data set and an average
of 22.08% faster for the flag data set. Both tests
demonstrated, however, that the reduction in time
decreased as more images were stored as editing
operations. The reason is that the proposed data
structure improves execution time when images
contain only operations with bound-widening rules.
Each edited image containing a non bound-widening
operation requires the same processing cost as the
algorithm of Section 3. If many of the edited images
fall into this category, the added cost of the data
structure actually hurts the performance of the query
processor.

6. Summary and Future Work

When focusing on improving the methods used by
CBIR components of MMDBMSs to search and
retrieve images, existing research focuses on
developing techniques for improving the feature
extraction or comparison functions. Unfortunately,
implementing those techniques in an existing system
requires changing the internal procedures used by
that system to perform those functions. As an
alternative, the approach of database augmentation
provides the ability to improve the retrieval accuracy
of an existing CBIR application without modifying
its internal procedures. Implementing the database
augmentation approach, however, means that the
system will need to store many edited versions of its
data objects. In order to save space, these additional
object versions can simply be stored as sequences of
editing operations.

Table 2. Default values of parameters used in performance evaluation
Description Helmet Flag
Number of images in database 551 817
Number of binary images in database 391 466
Number of edited images in database 160 351
Average number of operations within an edited image 4.56 4.99
Number of edited images that contain only operations with bound-widening rules 14 207
Number of edited images that have an operation whose rule is not bound-widening 146 144

www.manaraa.com

Range Query Time (Helmet Data Set)

0
0.02
0.04
0.06
0.08
0.1

0.12
0.14
0.16
0.18

0 0.1 0.2 0.3

Percentage of Images Stored as
Editing Operations

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)
w/out Data Structure
with Data Structure

Figure 3. Execution time vs. percentage of images stored as editing operations (helmets)

Range Query Time (Flag Data Set)

0

0.05
0.1

0.15

0.2

0.25
0.3

0.35

0.4

0 0.1 0.2 0.3 0.4 0.5

Percentage of Images Stored as
Editing Operations

Ex
ec

ut
io

n
Ti

m
e

(S
ec

on
ds

)

w /out Data Structure

w ith Data Structure

Figure 4. Execution time vs. percentage of images stored as editing operations (flags)

Assuming the edited objects are stored as

sequences of editing operations, another research
question involves how to search those objects without
instantiating them. The approach presented in this
paper is another step in answering that question.
Specifically, this paper presented an approach for
reducing the execution time when processing range
queries in a system that uses rules to determine the
color features of images stored as editing operations.
The approach is based upon identifying whether each
rule is a bound-widening rule.

This research focused on searching image
applications that are distinguished using color
features. It tested the approach on prototype systems
that used color histograms to represent images and
permitted users to submit range queries in order to
retrieve the data. These tests were performed
because they serve as the foundation for many
different representations of color and many different
types of queries. Still, more testing is needed to
verify the effects of the proposed data structure on
systems that represent color features without
histograms and systems that permit other types of

www.manaraa.com

queries including nearest neighbor searches. In
addition, in order to allow this approach to be
effective for a broader collection of applications, it
will be necessary to develop approaches for other
common features besides color, such as texture and
shape.

7. References

[1] Aslandogan, Y. A. and C. T. Yu, “Techniques and
Systems for Image and Video Retrieval”, IEEE
Transactions on Knowledge and Data Engineering,
Volume 11, Number 1, January/February 1999, pp.
56-63.

[2] Brown, L., L. Gruenwald, and G. Speegle,
“Testing a Set of Image Processing Operations for
Completeness”, Proceedings of the 2nd International
Conference on Multimedia Information Systems,
April 1997, pp. 127-134.

[3] Brown, L. and L. Gruenwald, “Tree-Based
Indexes for Image Data”, Journal of Visual
Communication and Image Representation, Volume
9, Number 4, 1998, pp. 300-313.

[4] Brown, L. and L. Gruenwald, “Performing Color-
Based Similarity Searches in Multimedia Database
Management Systems Augmented with Derived
Images”, Proceedings of the 21st British National
Conference on Databases, Lecture Notes in Computer
Science, Volume 3112, Springer, July 2004, pp. 178-
189.

[5] Brown, L., “Issues in Augmenting Image
Databases to Improve Processing Content-Based
Similarity Searches”, Proceedings of the 20th Annual
ACM Symposium on Applied Computing, March
2005, pp.1254-1255.

[6] Djeraba, C. et al., “Retrieval and Extraction by
Content of Images in an Object Oriented Database”,
Proceedings of the 2nd Conference on Multimedia
Information Systems, April 1997, pp. 50-57.

[7] Dukkipati, P. and L. Brown, “Improving the
Recognition of Geometrical Shapes in Road Signs By
Augmenting the Database”, Proceedings of the 3rd
Intl. Conf. on Computer Science and its Applications,
June 2005, pp. 8-13.

[8] Dunckley, L., Multimedia Databases: An Object-
Relational Approach, Addison-Wesley, London,
2003.

[9] images from URL http://www.flags.net, last
accessed on January 7, 2003.

[10] Gaede, V. and O. Günther, “Multidimensional
Access Methods”, ACM Computing Surveys,
Volume 30, Number 2, June 1998, pp. 170-231.

[11] URL http://www.geocities.com/jusjih/
roadsigns.html#d , last accessed May 26, 2005.

[12] Gupta, A. and R. Jain, “Visual Information
Retrieval”, Comm. of ACM, Vol. 40, No. 5, May
1997, pp. 71-79.

[13] Guttman, A., “R-trees: A Dynamic Index
Structure for Spatial Searching”, Proceedings of the
1984 ACM SIGMOD International Conference on
Management of Data, 1984, pp. 47-57.

[14] Images obtained from Web, URL
http://inside99.net/Helmet_Project/index.htm, last
accessed on January 7, 2003.

[15] Jagadish, H. V., “Content-Based Indexing and
Retrieval”, The Handbook of Multimedia
Information Management, Chapter 3, Grosky, Jain,
and Mehrotra (Eds.), Prentice Hall, 1997.

[16] Oria, V., et al., “Similarity Queries in the
DISIMA Image DBMS”, Proceedings of the 9th ACM
International Conference on Multimedia, October
2001, pp. 475-478.

[17] Ortega, M. et al., “Supporting Similarity Queries
in MARS”, Proceedings of the 5th ACM International
Conference on Multimedia, 1997, pp. 403-413.

[18] Software obtained from URL
http://www.acme.com/software/pbmplus/, last
accessed January 7, 2003.

[19] Speegle, G., X. Wang, and L. Gruenwald, “A
Meta-Structure for Supporting Multimedia Editing in
Object-Oriented Databases”, Proceedings of the 16th
British National Conference on Databases, July 1998,
Lecture Notes in Computer Science, Volume 1405,
Springer, pp. 89-102.

[20] Speegle, G. et al., “Extending Databases to
Support Image Editing”, Proceedings of the IEEE
International Conference on Multimedia and Expo,
August 2000.

www.manaraa.com

[21] Stehling, R. O., M. A. Nascimento, and A. X.
Falcão, “A Compact and Efficient Image Retrieval
Approach Based on Border/Interior Pixel
Classification”, Proceedings of the 11th International
Conference on Information and Knowledge
Management, November 2002, pp. 102-109.

[22] Swain, M. J. and D. H. Ballard, “Color
Indexing”, International Journal of Computer Vision,
Volume 7, Number 1, 1991, pp. 11-32.

[23] Tahaghoghi S. M. M., J. A. Thorn, and H. E.
Williams, “Are Two Pictures Better Than One”,
Proceedings of the 12th Australasian Conference on
Database Technologies, Queensland, Australia, Jan.
2001, pp. 138-144.

[24] Wallace, G. K., “The JPEG Still Picture
Compression Standard”, Communications of the
ACM, Volume 34, Number 4, April 1991, pp. 30-44.

[25] Zhao, W. et al., “Face Recognition: A Literature
Survey”, ACM Computing Surveys, Volume 35,
Number 4, December 2003, pp. 399-458.

